

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2010

CH5

SECTION A

1.	(a)	(i)	$\Delta H^{\stackrel{\Theta}{}}$	= -393.5	- 601.7	+ 1095.8	= +10	0.6 kJ mol ⁻¹		1 mark	[1]
		(ii)	The en have h	ntropy incro nigher entro	eases becapies than	ause a gas 1 solids.	is forme	d by the read	ction a	nd gases 1 mark	[1]
		(iii)	$\Delta S^{\bullet} =$	= 0.1748 kJ	mol ⁻¹ K ⁻	-1				1 mark	[1]
		(iv)	$\Delta G = \Delta G = T = C$ (mark (3 mark))	$= \Delta H^{\bullet} -$ = 0 100.6 / 0.1 consequent rks for corr	$T\Delta S^{\bullet}$ 748 = tially if Δ ect answe	576 K ΔH or ΔS er with no	° incorrec / incomp	rt) lete working	g show	1 mark 1 mark 1 mark 7n)	[3]
	(b)	Sodium carbonate soluble as ΔG negative (spontaneous reaction), 1 maring magnesium carbonate sparingly soluble / insoluble as ΔG positive. 1 marine or Sodium carbonate more soluble than magnesium carbonate, ΔG for sodium carbonate more negative than ΔG for magnesium carbonate					1 mark 1 mark ponate.	[2]			
	(c)	(i)	[Mg ²⁺	(aq)] = [$\text{CO}_3^{2-}(\text{aq})$)] = 3.1	6×10^{-3}	mol dm ⁻³		1 mark	[1]
		(ii)	$K_c =$	[3.16 × 10	$(-3)^{-3}]^2 =$	1.0×10^{-5}	$mol^2 dm$	-6		1 mark	[1]
		(iii)	Yes, the not oc	hey are cor cur sponta	nsistent, b neously),	ecause as K _c must h	ΔG was j ave a ver	positive (and y small valu	the roue.	eaction wo 1 mark	ould [1]

(iv) Adding extra carbonate ions would push the equilibrium to the left, decreasing the solubility. 1 mark [1]

Total [12]

2.	(a)	(i)	$K_{\mathrm{w}} = [\mathrm{H}^+] [\mathrm{OH}^-]$	1 mark	[1]
		(ii)	Equilibrium constant increases with temperature, so must be an process.	n endothe 1 mark	rmic [1]
		(iii)	$K_{\rm w} = 4.3 \times 10^{-14} ({\rm mol}^2 {\rm dm}^{-6})$	1 mark	[1]
		(iv)	$[H^+] = \sqrt{4.3} \times 10^{-14} = 2.07 \times 10^{-7} \text{ mol dm}^{-3}$ (allow 2.1 b)	1 mark ut not 2)	
			pH = $-\log (2.07 \times 10^{-7}) = 6.7$ (Mark consequentially if K_w or [H ⁺] are incorrect)	1 mark	[2]
	(b)	(i)	End point = $20.0 \text{ cm}^3 (allow 20 \text{ cm}^3)$ [NH ₃] × 25.0 = 0.100×20.0 1 mark for setting up e [NH ₃] = $0.080 \text{ mol dm}^{-3}$ 1 mark (must be two significant	1 mark equation figures)	[3]
		(ii)	$NH_4^+ \rightleftharpoons NH_3 + H^+$ / conjugate acid and base mixture NH_3 reacts with added acid to form NH_4^+ NH_4^+ dissociates as H^+ reacts with added alkali	1 mark 1 mark 1 mark	[3]
		(iii)	Methyl red (<i>any additional indicators treated as right / wrong</i>)	1 mark	
			pH range lies on the steep part of the curve	1 mark	[2]
	Total [1]				[13]

3.	(a)	Any 2×1 mark for A salt bridge: completes the circuit between the electrode solutions allows movement of ions							
		with	out any mixing of the solutions		[2]				
	(b)	(i)	Used as a standard / defined as zero (in standard hydrogen elec	ctrode). 1 mark	[1]				
		(ii)	EMF = 1.23 - 0 = 1.23V	1 mark	[1]				
		(iii)	Not operated under standard conditions / Process not 100% efficient /						
			Energy lost as heat	1 mark	[1]				
		(iv)	$2H_2 + O_2 \rightarrow 2H_2O$ or $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	1 mark	[1]				
		(v)	Dependent on the equation used						
			$\Delta H^{\circ} = -571.6 \text{ or } -285.8 \text{ kJ mol}^{-1}$	1 mark	[1]				
	(c)	(i)	It is difficult to store enough hydrogen onboard	1 mark	[1]				
		(ii)	Risk of hydrogen exploding in air	1 mark	[1]				
		(iii)	Products are not polluting / No CO ₂ greenhouse gas produced/H ₂ available from renewable sources	1 mark	[1]				
	(d)	(i)	Mass = $(30/100) \times 1000 = 300 \text{ g}$ No moles NaBH ₄ = $300 / 37.84 = 7.93$ moles	1 mark 1 mark	[2]				
		(ii)	Energy = $7.93 \times 300 = 2379$ kJ (Mark consequentially on the no moles in (i))	1 mark	[1]				
		(iii)	$7.93 \times 4 = 31.72 \text{ mol H}_2 \text{ gas}$ Volume = $31.72 \times 24 = 761.2 \text{ dm}^3$ (<i>Mark consequentially on the no moles in</i> (i))	1 mark 1 mark	[2]				

Total [15]

SECTION B

4.	(a)	(i)	Rate (<i>or</i> 1	$= 0.0020 / 17.5 = 1.14 \times 10^{-4} \text{ mol } \text{dm}^{-3} \text{ min}^{-1}$.90 × 10 ⁻⁶ mol dm ⁻³ s ⁻¹) Value 1 mark, units	1 mark	[2]
		(ii)	Follo / use Refe	by the decrease in brown colour due to the Br_2 a colorimeter rence to the measurement of time	1 mark 1 mark	[2]
		(iii)	Br ₂ (a CH ₃ (aq) zero order COCH ₃ (aq) first order	1 mark 1 mark	[2]
		(iv)	Ι	As the pH increases the rate of reaction decreases	1 mark	[1]
			II	When pH increases by one unit, $[H^+]$ decreases by a factor does the rate, so must be first order (<i>or equivalent stateme</i>)	r of ten, a ent) 1 mark	s [1]
			III	A catalyst (as more H^+ speeds the reaction up without bein equation)	ng in the 1 mark	[1]
		(QW	IV VC)(iv)	Rate = k [CH ₃ COCH ₃] [H ⁺] Units of k are mol ⁻¹ dm ⁺³ min ⁻¹ (<i>Mark units for k consequentially if rate equation incorred</i>) A coherent and clearly expressed response using a style a complex subject matter.	1 mark 1 mark ct) ppropriat	[2] e to [1]
	(b)	BN a	and C BN a (All t p-orb (Allo	can both adopt the same hexagonal structure: and C are isoelectronic (<i>or equivalent statement</i>) three) can form three (trigonal) bonds with one unbonded bital ow appropriate diagram(s))	1 mark 1 mark	[2]
		Both	BN a Both Weal the la	and C exhibit lubricating properties: BN and C have a layer structure k van der Waals forces between layers allow slippage of ayers	1 mark 1 mark	[2]
	(QW	C is Any	an ele two fr In C, cond Unlil empt In Bl sprea Legit mear	ctrical conductor but BN is an insulator at room temperature rom: delocalisation of electrons (between the unbonded p-orbit uction of electricity. ke C, in BN each N has a full unbonded p-orbital whereas a sy unbonded p-orbital. N, N is more electronegative than B, so electron density no ad. <i>ble text and accurate spelling, punctuation and grammar so</i> <i>ning is clear</i>	re: als) allow 1 mark each B ha 1 mark t evenly 1 mark o that 1 mark 1 mark	[2] s s an
			Infor when	mation organised clearly and coherently, using specialist a appropriate.	vocabular 1 mark	у [2]

Total [20]

5.	(a)	(i)	Blue 1 mark precipitate 1 mark		[2]
		(ii)	$\begin{array}{rcl} \mathrm{Cu}^{2+} &+& 2\mathrm{OH}^{-} \rightarrow & \mathrm{Cu}(\mathrm{OH})_{2} \\ or & \mathrm{Cu}\mathrm{SO}_{4} &+& \mathrm{Ca}(\mathrm{OH})_{2} &\rightarrow & \mathrm{Cu}(\mathrm{OH})_{2} &+& \mathrm{Ca}\mathrm{SO}_{4} \end{array}$	1 mark	[1]
	(b)	(i)	Starch Blue to colourless	1 mark 1 mark	[2]
		(ii)	No moles $Na_2S_2O_3 = 12.25 \times 0.100 / 1000 = 1.225 \times 10^{-3}$ Mass $Cu = 1.225 \times 10^{-3} \times 63.5 = 0.0778$ g % $Cu = 0.0778 \times 100 / 31.2 = 0.249$ % (deduct 1 mark if both second and third answers not to 3 significant contents of the second and	1 mark 1 mark 1 mark ficant figu	[3] res)
	(c)	(i)	$\begin{array}{c} Cu^{2+} \ 1s^2 2s^2 2p^6 3s^2 3p^6 3d^9 \\ Cu^+ \ 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} \end{array}$	1 mark 1 mark	[2]
		(ii)	3d orbitals split (by water ligands) (In an approximately octahedral field) three d-orbitals have low two have higher energy Electrons absorb (visible light) energy to jump from lower level level The blue colour is that due to the remaining / non-absorbed free	1 mark ver energy 1 mark 1 to highe 1 mark quencies 1 mark	r
			(Appropriate diagrams are acceptable alternatives).	1 marx	[4]
		(iii)	Colour arises from d-d electron transitions, not possible in Cu ⁺ 3d subshell is full.	because the	he [1]
	(d)	(i)	CCl ₄ forms two layers / does not mix with water / no reaction SiCl ₄ reacts explosively / exothermically	1 mark	
			misty fumes / sharp smelling fumes / acid solution / white ppt. $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$ (Allow Si(OH) ₄)	1 mark 1 mark	[3]
		(ii)	In PbCl ₂ the Pb ²⁺ ion is stabilised due to the inert pair (ns^2) effe	ect 1 mark	
			1 mark for any one of the following CCl ₂ and SiCl ₂ are too unstable to exist because: oxidation state IV is more stable than oxidation state II at the group	e top of th	e
			<i>or</i> oxidation state II increases in stability down the group <i>or</i> covalent bonding is more stable than ionic at the top of th	ie group ai	nd
			four bonds are needed for an outer octet . <i>or</i> insert pair effect becomes more significant down the grou	ıp	[2]

Total [20]

PMT

GCE Chemistry MS - Summer 2010 / JF

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2011

CHEMISTRY - CH5

Q.2 (a) (i) $H_2 + \frac{1}{2} O_2 \rightarrow H_2 O$ [1]

	(ii)	Higher efficiency / no carbon dioxide emissions / water only / no greenhouse gases / can use renewable energy resources. Too vague - do not accept clean / no polluting gases / no global warming.	[1]
(b)	(iii)	A = Salt bridge (1) B = High resistance voltmeter /potentiometer (1) C = Platinum electrodes (1)	[3]
	(i)	$\Delta H = 2 \times \Delta H (H_2O) + \Delta H (CO_2) - \Delta H (CH_3OH)$ = 2 x -286 + (-394) -(-239) (1) = -727 kJ mol ⁻¹ (1)	[2]
	(ii)	Entropy of (methanol) gas is higher than liquid (1) So entropy change will be more negative (1)	[2]
	(iii)	$\Delta G = -727000 - (298x - 81) = -703 \text{ kJ mol}^{-1} (1)$ Allow ECF Negative ΔG means reaction is feasible. (1)	[2]
		Total	[11]

[2]

Q.3 (a) Any 2 for (1) each from:

- Measure pressure (at constant volume) over time
- Measure volume (at constant pressure) over time •
- Colorimetry/ measuring colour over time • 1 mark allowed if time not mentioned
- (b) (i) When concentration doubles, rate doubles (1)

Therefore first order or rate is proportional to concentration (must give reason to obtain this mark) (1) [2]

Credit possible by alternative methods:

Calculate k for each and show that all values are the same; Calculate k for one concentration and use to calculate other values.

(ii)	$k = Rate \div [N_2O_5]$	e.g. k = 3.00 x 10 ⁻⁵ ÷ 4.00 x 10 ⁻³ (1)	
		= 7.50×10^{-3} (1) must be 3 significant figures	
	Units = s ⁻¹ (1)		[3]

(iii) Rate determining step must have one N_2O_5 molecule as reactant. (1) Mechanism A matches this rate equation (1) need reason to get this mark [2]

Accept reverse argument.

(c) (i)
$$K_p = \frac{P_{N_pQ_p}}{P_{NQ_p}}$$
 [1]

- (ii) Increasing temp shifts equilibrium to left / favours endothermic reaction (1) so value of K_p is decreased. (1) [2]
- $$\begin{split} P_{N204} &= 9.5 \ x \ 10^3 \ \text{Pa} \ \ (1) \\ K_p &= 9.5 \ x \ 10^3 \ \div (2.81 \ x \ 10^5)^2 = 1.20 \ x \ 10^{-7} \ \ (1) \ \ \text{Allow ECF} \end{split}$$
 (iii) Units = $Pa^{-1}(1)$ Mark consequentially on answer to (c)(i) [3]

Total [15]

Q.4	(a)	(i)	Transition metals have partially filled <i>d</i> -orbitals (in atom or ion)	[1]
		(ii)	Iron and copper have partially filled d-orbitals in their ions , zinc de not	ces [1]
	(b)	QWC: vocab QWC: compl	organisation of information clearly and coherently; use of specialis ulary where appropriate.(1) selection of a form and style of writing appropriate to purpose and exity of subject matter. (1)	to [2]
		 Lig int Ele Co Co Dif Co So 	gands cause d-orbitals to split o 2 higher energy/ 3 lower energy ectrons <u>absorb light</u> (frequencies) to move to <u>higher</u> energy level olour seen is colour transmitted/reflected/not absorbed opper(II) complexes absorb red /orange/yellow/all colours except bl [MAX 4 marks from points al fferent ligands cause different splittings / different ΔE . opper(I) ion has full d-orbitals.	ue. bove]
	(\mathbf{c})	(i)	$F_{\Phi_{n}} O_{n} + 3CO \rightarrow 2F_{\Phi_{n}} + 3CO_{n}$	[1]
	(0)	(i) (ii)	Fe oxidation state goes from +3 to 0 (1) / so it is reduced (1) OR C (not CO) oxidation state goes from +2 to +4 (1)/ so it is beir oxidised. (1) <i>Allow ECF</i>	ریا ۱g [2]
		(iii)	Stable oxidation state of (C is +4 whilst) Pb is +2 (1) Due to inert pair effect becoming more significant down the group	. (1) [2]
	(d)	(i)	$6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$	[1]
		(ii)	Moles $Cr_2O_7^{2-} = 23.80 \times 0.0200 \div 1000 = 4.76 \times 10^{-4}$ moles (1) Moles $Fe^{2+} = 4.76 \times 10^{-4} \times 6 = 2.86 \times 10^{-3}$ moles (1)	[2]
		(iii)	Mass Fe in sample = 2.86 x 10 ⁻³ x 10 x 55.8 = 1.59 g (1) Percentage Iron = 1.59 ÷ 1.870 x 100 = 85.2% (1)	[2]
			Tota	i [20]

- **Q.5** (a) Named compound examples, need both name and use for (1)
 - Sodium chlorate(I) = bleach
 - Sodium chlorate(V) = weedkiller
 - PVC = windows frames/guttering/pipes/insulation for electrical wires
 - Dichloromethane solvent / paintstripper
 - CFCs = refrigerants / aerosol propellants
 - Aldrin / Dieldrin / DDT = Insecticides

(b) (i)
$$Cl_2 + 2Br \rightarrow Br_2 + 2Cl^2$$

- (ii) Emf for reaction of bromide with chlorine is +0.27 V / E^ø for chlorine is more positive than for bromine. (1)
 - Emf for reaction of bromide with iodine is -0.55 V / E^ø for iodine is less positive than for bromine. (1)
 - Reactions are only feasible if Emf is positive / if E^ø for oxidising agent is more positive than for species being oxidised. (1)
- [3] (c) (i) White precipitate with (sodium) chloride, yellow precipitate with (sodium) iodide [1]
 - (ii) QWC: legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. (1) [1]
 - NaCI: Steamy gas / bubbles (1)
 - Nal: Steamy gas /smell of rotten eggs / purple vapour or brown solution or black solid / yellow solid (1 mark for 2 observations)
 - NaCl: NaHSO₄, HCl / Nal: NaHSO₄ / HI / I₂ / H₂S / SO₂ / S / H₂O (1 mark for 2 products; 2 marks for 4 products)
 - lodide is easier to oxidise / iodide is a stronger reducing agent than chloride (1)

[5]

(d) (i) (Almost) completely dissociates to release H⁺. [1]

(ii)
$$\mathbf{K}_{a} = \frac{[\mathbf{M}^{+}][\mathbf{o}\,\mathbf{c}]^{-}]}{[\mathbf{H}\,\mathbf{o}\,\mathbf{c}]]}$$
[1]

(iii) $[H^+] = 10^{-pH} \text{ OR } pH = -\log [H^+]$ (1) $[H^+] = 5.88 \times 10^{-5} \text{ mol } dm^{-3}$ (1) [2]

(iv)
$$K_a = \frac{[H^+][o cl^-]}{[Ho cl]} = \frac{(3.88 \times 10^{-5})^2}{0.100}$$
 (1)= 3.47 x 10⁻⁸ (mol dm⁻³) (1)
(allow consequential answers) [2]

(v) pH above 7 (up to 10) (1)
 OCI⁻ in equilibrium with HOCI / OCI⁻ will remove H⁺ from solution (1) [2]

Total [20]

GCE Chemistry MS - Summer 2011

[1]

[1]

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2012

CH5

SECTION A

1.	(a)) 1 c	Im ³ at 20°C contains 52.9 g and at 0°C it contains 17.5 g (1) \therefore amount crystallised = 52.9 - 17.5 = 35.4 g (1)	[2]
	(b)) (i)	2 mol of $K_2S_2O_8$ give 1 mol of O_2 2 mol of $K_2S_2O_8$ give 29.0 dm ³ of O_2 (1) \therefore 0.1 mol of $K_2S_2O_8$ gives 29.0/20 = 1.45 dm ³ of oxygen (1)	[2]
		(ii)	Measure the volume of oxygen produced at specified time intervals / Measure the pH of the solution at specified time intervals	[1]
	(c)	(i)	An (inert) electrode that is used to carry the charge / current / electron flow	[1]
		(ii)	A comment on the relative values (e.g. the persulfate system is the more positive of the two systems) (1) The more positive 'reagent' / persulfate ions acts as the oxidising agent, accepting electrons via the external circuit (1) - must have the first mark to get second	[2]
	(d)	(i)	The experiments show that both the concentrations of iodide and persulfate have doubled (1) therefore the initial rate should increase four times $4 \times 8.64 \times 10^{-6} = 3.46 \times 10^{-5}$ (1)	[2]
		(ii)	Rate = $k [S_2 O_8^{2^-}] [I^-]$ (1) $k = -8.64 \times 10^{-6}$	
			$\frac{0.04 \times 10}{0.0400 \times 0.0100}$	
			$= 0.0216 (1) dm^3 mol^{-1} s^{-1} (1)$	[3]
	((iii)	In the rate equation one $S_2O_8^{2-}$ ion reacts with one I ⁻ ion. The rate-determining step therefore has to have 1 mole of each reacting, as (only) seen in step 1	[1]

Total [14]

2.	(a)		- 705 (kJ mol ⁻¹) (1) for correct sign (1) for correct number	[2]
	(b)	(i)	hydration	[1]
		(ii)	e.g. add a small 'amount' of an alkali / sodium hydroxide / NaOH / OH ⁻ ions this would remove / react with hydrogen ions giving water, shifting the pool of equilibrium to the left (removing iodine) (1) add $P6^{2+}$ / Ag^+ ect.	(1) osition [2]
	(c)	(i)	Any TWO from white / misty fumes (of HI) yellow solid / solution (of sulfur) brown / black solid / purple vapour (of iodine) bubbles / effervescence / fizzing	
			One mark for each correct response	[2]
		(ii)	The values show that chlorine is the best oxidising agent, as it has the most positive E^{θ} value and therefore iodide is the better reducing agent (1)	
			and is 'strong' enough to reduce the sulfuric acid. / OWTTE (1)	[2]
	(d)	(i)	$2 \text{ NaOH} + \text{Cl}_2 \rightarrow \text{NaOCl} + \text{NaCl} + \text{H}_2\text{O}$	[1]
		(ii)	e.g. bleach, kills bacteria	[1]
			r	Fotal [11]

3. (a) (i)

Number of moles of EDTA =
$$\frac{19.20 \times 0.010}{1000}$$
 = $1.92 \times 10^{-4} / 0.000192$ [1]

- error carried forward throughout (a)

(ii)
$$1.92 \times 10^{-4} / 0.000192$$
 [1]

(iii) Concentration =
$$\frac{1.92 \times 10^{-4} \times 1000}{50}$$
 = $3.84 \times 10^{-3} / 0.00384 \text{ mol dm}^{-3}$ (1)

Concentration =
$$3.84 \times 10^{-3} \times 63.5 = 0.244 \text{ g dm}^{-3}$$
 (1) [2]

(iv) % Cu =
$$0.244 \times 100 = 2.11$$
 [1]
11.56

- (b) Transition elements have either a partly filled 3d sub-shell or form ions that have a partly filled 3d sub-shell (1) However copper forms Cu^{2+} ions that are '3d⁹' / partly filled 3d sub-shell (1) whereas Zn^{2+} ions are '3d¹⁰' / full 3d sub-shell (1) - any 2 from 3 [2]
 - *QWC Organisation of information clearly and coherently; use of specialist vocabulary where appropriate.* [1]

(c)

Complex ion	Shape	Colour
[CuCl ₄] ²⁻	tetrahedral	yellow / lime green
$[Cu(NH_3)_4(H_2O)_2]^{2+}$	octahedral	deep blue

Any two correct (1) all correct (2)

[2]

- (d) The more negative the ΔH_f value the more stable the oxide (1) PbO is relatively the more stable / CuO is relatively the less stable (1) - must have the first mark to get second [2]
- (e) (i) Any TWO from variable oxidation states partially filled 3d energy levels ability to adsorb 'molecules' ability to form complexes with reacting molecules / temporary / co-ordinate bonds
 One mark for each correct response [2]
 (ii) e.g. to allow lower pressures / temperatures use recyclable catalysts - needs qualifying [1] longer lasting / less toxic catalysts

Total [15]

SECTION B

4.	(a)	$CO \rightarrow C +2 \qquad CO_2 \rightarrow +4 \qquad (1)$	
		Increase of (positive) oxidation number = oxidation / reducing agents themselves are always oxidised are always oxidised (1))
		OR $I_2O_5 \rightarrow I +5$ $I_2 \rightarrow I_2 0$ (1)	
		Oxidation number of iodine reduced, reduction occurring, CO reducing agent (1)	[2]
	(b)	+2 state becomes mores stable down the group and +4 becomes less stable.	[1]
	(c)	(i) Add (a little) sodium hydroxide solution (1) to each solution.A white precipitate (1) of aluminium / lead(II) hydroxide (1) is seen.	
		When more sodium hydroxide solution is added these precipitates (dissolve giving a colourless solution). (1)	[4]
		<i>QWC</i> Legibility of text: accuracy of spelling, punctuation and grammar; clarity of meaning.	[1]
		(ii) Yellow precipitate (1) $Pb^{2+} + 2I^- \rightarrow PbI_2$	[2]

(d) (i) The bonding of aluminium in the monomer has not completed the octet / suitable diagram / 6 electrons in its outer shell (1)
 When the dimer is formed this octet of bonded electrons is formed (1)

$$\begin{array}{c} CI \\ | \\ CI \\ AI \\ | \\ | \\ CI \\ AI \\ CI \end{array}$$
(1) [3]

(ii) (As a catalyst) in the chlorination of benzene / making ionic liquids [1]

(iii) I The number of (gaseous) species is increasing, leading to less order [1]

II For the reaction to be just spontaneous $\Delta G = 0$ (1)

substituting $0 = 60\ 000 - 88\ T$

$$T = 60\ 000\ /\ 88 = 682\ K\ /\ 409^{\circ}C \qquad (1) \qquad [2]$$

$$K_{c} = [[\underline{Al(H_{2}O)_{5}(OH)}]^{2+}(aq)][[\underline{H^{+}}](aq)]} \\ [[Al(H_{2}O)_{6}]^{3+}(aq)]$$

$$\therefore 1.26 \times 10^{-5} = [H^{+}]^{2} / 0.10$$

$$\therefore [H^{+}]^{2} = 1.26 \times 10^{-6} [1]$$

$$\therefore [H^{+}] = \sqrt{1.26 \times 10^{-6}} = 1.12 \times 10^{-3} / 0.00112 (1)$$

$$- \text{ error carried forward}$$

$$pH = -\log_{10}[H^{+}] = -\log_{10} 1.12 \times 10^{-3} = 2.95 (1) [3]$$

Total [20]

(e)

5.	(a) (i)	$K_{p} = \frac{pSO_{3}(g) \times pNO(g)}{pSO_{2}(g) \times pNO_{2}(g)} $ (1) there are no units (1)	[2]
	(i	i)	The line for SO ₃ / NO at equilibrium should be above the SO ₂ / NO ₂ line (1) as K_p has a value of 2.5, the partial pressures of SO ₃ and NO at equilibrium will be greater than the partial pressures of SO ₂ and NO ₂ . (1) - accept answer in terms alternative coloulated K	of
			The line for equilibrium should start at 9 hours. (1) as at equilibrium the concentrations is unchanged as time progresses. (1)	raiue
			There may be other acceptable forms of explanation to be discussed at the conference	[4] ;
	(iii))	If the temperature rises then the position of equilibrium will move to the left, (reducing the quantities of SO ₃ and NO). (1) This will make the value of K_p smaller. (1)	[2]
	(b) (:	i)	Nitric acid is a strong acid and its pH is $low / <2 / 1.0$ (1) As aqueous ammonia is added the pH slowly rises (1) until a pH of ~3 is reached, when it rises rapidly (1) At a pH of 8-9, it tails off slowly as ammonia is a weak base. (1)	501
			Accept any 3 from 4	[3]
			complexity of subject matter	[1]
	(ii))	The equivalence point is reached when 20.0 cm^3 of ammonia solution has been added as this is at the mid point of the more vertical section. (1)	
		: 1	Since both reagents have the same concentration and the volumes used are both 20 cm the same, the number of moles of each are the same (1)	3 /
		(OR the number of moles of both nitric acid and aqueous ammonia are calculated $(0.0 \text{ and shown to be the same } (1)$	020)
			\therefore Mole ratio must be 1 : 1 (1)	[2]
	(iii)]	 I Ammonium nitrate is the salt of a strong acid and weak base / there is a buffering of in operation. II ~ 5.5 	effect [1] [1]
	(iv)		Blue, as bromophenol blue is blue at a pH of 4.7 and above	[1]
	(c)		Number of moles of ammonium nitrate $= \frac{40}{80} = 0.50$ (1)	
			- error carried forward Concentration of ammonium nitrate solution = $\frac{0.5 \times 1000}{200}$ = 2.5 mol dm ⁻³	(1)
			\therefore Temperature drop = 2.5 × 6.2 = 15.5°C (1)	[3]
			Total	[20]
GC	E Chemi	stry	y MS – Summer 2012	

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2013

GCE CHEMISTRY – CH5

SUMMER 2013 MARK SCHEME

Q.1	(a)	Name of any commercially/ industrially important chlorine containing compound e.g. (sodium) chlorate(I) as bleach/ (sodium) chlorate(V) as weedkiller/ aluminium chloride as catalyst in halogenation						
		outur.	- do not acce	pt CFCs		[1]		
	(b)	(i)	$\mathcal{K}_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$	$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$ must be square bracket		[1]		
		(ii)	$K_{\rm c} = \frac{0.11^2}{3.11^2} = 1.25 \times$	10 ⁻³	follow through error (ft)	[1]		
		(iii)	$K_{ m c}$ has no units		ft	[1]		
		(iv)	when temperature increases $K_{\rm c}$ increases (1)					
			this means equilibrium has moved to RHS / increasing temperature favours endothermic reaction (1)					
			therefore ΔH for forw (mark only awarded	/ard reaction is if marking poin	+ve (1) t 2 given)	[3]		
	(c)	(i)	+2			[1]		
		(ii)	co-ordinate/ dative (covalent)		[1]		
		(iii)	pink is $[Co(H_2O)_6]^{2+}$ a	and blue is [Co	Cl ₄] ²⁻ (1)			
			(ligand is) Cl⁻ (1)					
			(addition of HCl send	ds) equilibrium	to RHS (1)	[3]		
		(iv)	$[Co(H_2O)_6]^{2+}$ shown a	as octahedral [with attempt at 3D] (1)			
			$\left[\text{CoCl}_4\right]^{2-}$ shown as to	etrahedral/ squ	are planar (1)	[2]		

Total [14]

Q.2	(a)	(i)	tangent drawn at t = 40 (1)				
			rate calculated 0.017 to 0.027 (igno	ore units) (1)	[2]		
		(ii)	as reaction proceeds less collisions	s (per unit time) occur	[1]		
	(b)	(i)	1 st order shown by:				
			calculation of rates at at least 2 concentrations (1)				
			statement rate α concentration (1)				
			OR				
			constant half-life (1)				
			half-life is 24 minutes (1)		[2]		
		(ii)	rate = $k[N_2O_5]$ (1)		[1]		
		(iii)	k = rate (from (i))/ $[N_2O_5]$ (from grap (mark correct numbers – no need t	oh) (1) o check evaluation)			
			units = minutes ⁻¹ (1)	ft from (ii)	[2]		
		(iv)	(student A more likely to be correct rate determining step	t) reaction is 1^{st} order and 1 [N $_2O_5$] ir	nvolved in [1]		
	(c)	correc	t curve starting at 100 kPa and becc	oming horizontal (1)			
		horizo	ntal at 250 kPa (1)		[2]		
				То	tal [11]		

Q.3	(a)	an ac	id is a proton / H⁺ donor	[1]						
	(b)	рН = -	-log[H $^{+}$] / negative log of hydrogen ion concentration	[1]						
	(C)	a low	pH corresponds to a high concentration of $H^{+}(1)$							
		a stro	ng acid is totally dissociated whilst a weak acid is partially dissociated (1)							
		need	need to consider concentration (of acid solution) as well as strength of the acid (1)							
		a con strong	concentrated solution of a weak acid could have a lower pH than a dilute trong acid (1)							
		QWC	Accuracy of spelling, punctuation and grammar	QWC [1]						
	(d)	(i)	$K_{a} = \frac{[\text{HCOO}^{-}][\text{H}^{+}]}{[\text{HCOOH}]}$	[1]						
		(ii)	$1.75 \times 10^{-4} = \frac{x^2}{0.1}$ (1)							
			$x = 4.183 \times 10^{-3}$ (1)							
			pH = 2.38 (1)	[3]						
	(e)	(i)	buffer	[1]						
		(ii)	RCOOH \rightleftharpoons RCOO ⁻ + H ⁺ and RCOONa → RCOO ⁻ + Na ⁺ (1)							
			added H^+ removed by salt anion/ A^- + $H^+ \rightarrow HA$ (1)							
			added OH ⁻ removed by acid/ OH ⁻ + HA \rightarrow A ⁻ + H ₂ O (1)	[3]						
				Total [15]						

Q.4 (a) diagram with labels to show

		H_2/H^+ shown in electrode (1)	
		platinum (in both electrodes) (1)	
		Fe ²⁺ (aq) and Fe ³⁺ (aq) (1)	
		high resistance voltmeter (1)	
		salt bridge (1)	
		gas at 1atm pressure, solutions of concentration 1 mol dm^{-3} , temperature 298K (1)	
		[any 5]	[5]
(b)	(i)	successive ionisation energies increase gradually/ the energies of the d orbitals are similar	e [1]
	(ii)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ / 3d ¹⁰ 4s ²	[1]
	(iii)	after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high	[1]
(c)	(i)	violet solution contains V^{2+} (1)	
		SEP Zn ²⁺ / Zn is more negative than VO ₃ ^{-/} / VO ²⁺ and VO ²⁺ / V ³⁺ and therefore	
		releases electrons/ VO_3^{-}/VO^{2*} and VO^{2*}/V^{3*} are more positive than	
		Zn^{2+}/Zn and are stronger oxidising agents (1)	
		V^{2+} cannot be reduced (to V) since SEP is more negative than Zn ²⁺ / Zn (1)	[3]
	(ii)	1.1V (ignore sign)	[1]
	(iii)	$Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direction	on [1]
	(iv)	if Zn ²⁺ (aq) concentration increased equilibrium moves to LHS (1)	
		so electrode potential becomes less negative (1)	[2]

P	M	Τ

(d) (i)
$$2.74 \times 10^{-3}$$
 (mol) [1]
(ii) 1.37×10^{-3} (mol) [1]

(iii)
$$M_r KIO_3 = 214.1$$

moles KIO_3 = 0.978/ 214.1 = 4.57 \times 10 3 in 250 cm^3

$$4.57 \times 10^{-4} \text{ in } 25 \text{ cm}^3$$
 [1]

(iv)
$$1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3$$
 (1)

equation 1 is correct since 3 moles of iodine formed (mark awarded for reason) (1) [2]

Total [20]

Q.5	(a)	(i)	atomisation of magnesium / vaporisation of magnesium	[1]
		(ii)	increased ratio positive charge on nucleus: number of electrons	[1]
		(iii)	is positive because the (negative) electron is repelled by negative species	[1]
		(iv)	lattice enthalpy is –3835(kJ mol ⁻¹) numerical value (1) negative sign (1)	[2]
	(b)	(i)	gases are more random/ have more disorder / move more freely and therefore have a higher entropy	a [1]
		(ii)	$\Delta S = 21.8 (JK^{-1}mol^{-1})$	[1]
		(iii)	$\Delta G = \Delta H - T \Delta S (1)$ ft from (ii)	
			ΔG must be –ve if reaction to be spontaneous/ to calculate T make ΔG = 0 (1)	
			0 = 318000 – T 21.8 T = 14587/14600 (K) (1)	[3]
	(C)	use of	aqueous sodium hydroxide (1)	
		white p	precipitate for all possible ions (1)	
		excess	aqueous sodium hydroxide – precipitate dissolves for Pb^{2+} and Al^{3+} (1)	
		use of	aqueous (potassium) iodide/ hydrochloric acid/ sulfuric acid / soluble	
		chlorid	e/ soluble sulfate (1)	
		result -	- yellow ppt for $Pb^{2+} + I^{-}$ and no ppt for AI^{3+} / white ppt for $Pb^{2+} + CI^{-}$ or SO_4^{2-}	
		and no	ppt for Al ³⁺ [result for both needed] (1)	[5]
		QWC (Organisation of information clear and coherent (1)	
			Use of specialist vocabulary (1) QWC	; [2]
	(d)	(i)	diagram to show central AI, 4 Cl ⁻ and 4 shared pairs of electrons, all Cl outer electrons, dative pair identifiable	[1]
		(ii)	chlorination of benzene (1) produces Cl^+ as electrophile (1)	
			OR gives ionic liquids (1) with low vapour pressure/ non-volatile/ do not evaporate	
			in use (1)	
			OR catalyst (1) in polymerisation of alkenes (1)	[2]
			Total [20]

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY – CH5

SUMMER 2014 MARK SCHEME

SECTION A

Q.1	(a)	(i)	$NH_4^+(aq) + OH^-(aq) \longrightarrow NH_3(aq) + H_2(aq)$			- H ₂ O(l)	
			Acid 1 (1 mark fo	Base 2 or each pair)	Base 1	Acid 2	[2]

(b) (i)

	$[\mathrm{NH_4^+}(\mathrm{aq})]/\mathrm{mol}\ \mathrm{dm}^{-3}$	$[NO_2^{-}(aq)]/mol dm^{-3}$	Initial rate/mol dm ⁻³ s ⁻¹					
1	0.200	0.010	4.00×10^{-7}					
2	0.100	0.010	2.00×10^{-7}					
3	0.200	0.030	1.20×10^{-6}					
4	0.100	0.020	4.00×10^{-7}					
(1 mark for each correct answer)								

(ii)
$$k = \frac{4.00 \times 10^{-7}}{0.200 \times 0.010} = 2.0 \times 10^{-4}$$
 (1)
Units = mol⁻¹ dm³ s⁻¹ (1)

(iv) Increases

If temperature is increased rate increases (1)

and since concentrations do not change the rate constant must increase [2] (or similar) (1)

Total [10]

[2]

Q.2
 (a)
$$K_w = [H^+][OH^-]$$
 (1)
 (1)

 (b) (i) In pure water $[H^+] = [OH^-]$ or $[H^+] = \sqrt{1.0 \times 10^{-14}}$
 (1)
 pH

 $pH = -log \ 10^{-7} = 7$
 (1)
 (2]

 (ii) Final volume of solution is 1000 cm³ so acid has been diluted by a factor of 100 so final concentration of acid is 0.001
 (1)
 (2]

 (ii) Final volume of solution is 1000 cm³ so acid has been diluted by a factor of 100 so final concentration of acid is 0.001
 (1)
 (2]

 (c) 1.78 × 10^{-5} = $[H^+] \times 0.02$
 (1)
 (1)
 (2]

 (c) 1.78 × 10^{-5} = $[H^+] \times 0.02$
 (1)
 (1)
 [3]

 (d) The solution is a buffer
 (1)
 (1)
 [3]

 (d) The solution is a buffer
 (1)
 (1)
 (1)

 Solution contains a large amount of CH₃COOH and CH₃COO⁻ ions (Accept correct equations)
 (1)
 (1)

 When an acid is added, the CH₃COO⁻ ions react with the H⁺ ions, removing them from solution and keeping the pH constant
 (1)
 [3]

Total [12]

Q.3 (a)
$$H: O: O: H$$
 [1]

(b)
$$20 \text{ dm}^3 \text{ oxygen} = 0.83 \text{ mol}$$
 (1)
Moles $H_2O_2 = 1.67$ and $[H_2O_2] = 1.67 \text{ mol dm}^{-3}$ (1) [2]

Electrons absorb (visible light) energy to jump from lower level to higher level (1)

The colour is that due to the remaining / non-absorbed frequencies (1) (Appropriate diagrams are acceptable alternatives)

[4]

QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning [1]

(d) (i)
$$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$$
 [1]

(ii)
$$5H_2O_2 + 6H^+ + 2MnO_4^- \longrightarrow 2Mn^{2+} + 5O_2 + 8H_2O$$
 [2]

(Mark consequentially from (i) - 1 mark if formulae correct but equation not balanced properly)

(iii) Moles
$$MnO_4^- = 0.02 \times 14.8 = 2.96 \times 10^{-4}$$
 (1)
1000

Moles
$$H_2O_2 = 7.40 \times 10^{-4}$$
 (1)

Concentration
$$H_2O_2 = \frac{7.40 \times 10^{-4}}{0.020} = 0.037 \text{ mol dm}^{-3}$$
 (1) [3]

Total [18]

SECTION B

Q.4	(a)	(i)	Oxidising agent				[1]
		(ii)	A = lead(II) chloride $B = chlorine / Cl_2$	/ PbCl ₂	(1)		[2]
				2	(1)		[4]
		(iii)	$[Pb(OH)_6]^{+-}/ [Pb(O$	H) ₄] ²⁻ / Na ₄ [$Pb(OH)_6$] etc.		[1]
		(iv)	Yellow				[1]
		(v)	PbO + 2HNO ₃ —		$Pb(NO_3)_2 + H_2O$		[1]
	(b)	(i)	Each C atom covalen	tly bonded to	o three other C atoms for	ming lay (1)	vers
			Layers held together	by weak inte	rmolecular forces	(1)	
			BN is isoelectronic w	vith C so it fo	orms similar structures	(1)	
			Graphite conducts ele each N has a full unb unbonded p-orbital so	ectricity since onded p-orbi o it does not	e electrons are delocalise tal and each B has an en conduct electricity	ed but in hpty (1)	BN, [4]
			(Accept electrons are electricity)	not delocali	sed in BN so it does not	conduct	
			QWC The information specialist vocabulary	on is organis where appro	ed clearly and coherentl <u>;</u> opriate	y, using	[1]
		(ii)	Wear-resistant coatin electronic componen	gs/catalyst s ts / drills in i	upport/for mounting higl ndustry / cutting instrum	n power ents	[1]
	(c)	(i)	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \ \Delta \mathbf{S}$	$(\Delta G = 0 \text{ for})$	r reaction to be spontane	ous)	(1)
			T = 1.92 0.0067		(1)		
			T = 286.6 K		(1)		[3]
		(ii)	Changes in temperatu change form making	are (above or it unstable (a	below 286.6 K) caused and causing it to disinteg	the tin to rate)	, [1]

(d)	(i)	(At the anode)	$H_2 \longrightarrow 2H^+ + 2e^-$	(1)
		(At the cathode)	$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	(1)
		(Overall reaction)	$2H_2 + O_2 \longrightarrow 2H_2O$	(1)
				[3]

(ii) Hydrogen is difficult to store / takes up large volume / too flammable / explosive / produced from fossil fuels which leads to a net energy loss / Pt electrodes very expensive [1]

Total [20]

Q.5	(a)	(i)	Cold	$Cl_2 + 2Na$	он ——	→ NaCl + N	JaClO + H	$_{2}O$	(1)
			Warm	$3Cl_2 + 6N$	aOH	→ 5NaCl +	NaClO ₃ +	- 3H ₂ O	(1)
									[2]
		(ii)	Dispro	portionation	l				[1]
	(b)	P can P can	(extend promote	the normal of 3s electron	octet of elect to 3d orbita	rons) by using 3	d orbitals /		
		N can	not do th	his since it is	s in the second	nd period / 3d or	bitals not a	vailable	(1) [2]
	(c)	The te	erms invo	olved are: la	ttice breakin	g enthalpy whic	h is endoth	ermic	(1)
		and hy	dration	enthalpy wł	nich is exoth	ermic			(1)
		ΔH so	lution =	ΔH lattice l	preaking $+ \Delta$	H hydration (or	r similar)		(1)
		If ∆H	solution	is negative	then the ion	ic solid will be s	soluble		(1)
									[4]
		QWC compl	Selection exity of s	on of a form subject matt	and style of er	f writing approp	riate to pur	pose an	d to [1]
	(d)	(i)	Iodide Only o Fe ³⁺ , F (2 nd ma	ne with less e ²⁺ half-cell ark can be o	(1) positive stat (1) btained from	ndard potential t	han ue and state	ement)	[2]
		(ii)	Pt(s)	Fe ²⁺ (aq), Fe = 1.45 – 0.7	$^{3+}(aq) \ Ce^{4+}$ 7 = 0 .68 V	(aq), $\operatorname{Ce}^{3+}(\operatorname{aq}) _{\mathrm{H}}$	' t (s)	(1) (1)	[2]
	(e)	(i)	$K_c = [C]$	<u>CH₃COOCH</u> H₃COOH][([<u>3][H2</u> O] CH3OH]		(1)		
			No uni	ts			(1)		[2]
		(ii)	moles	$=$ $\frac{1.25 \times 32.}{1000}$	$\underline{0} = 0.04(0)$				[1]
		(iii)	[CH ₃ C	OOH] = 0.0	4. therefore	0.06 used in rea	ction and		
			[CH ₃ C	$OOCH_3] = 0$	0.06, [H ₂ O] =	= 0.06 and			
			[CH ₃ O	[H] = 0.083	-0.06 = 0.02	23	(1)		
			$K_{c} = \underline{0}.$	$\frac{.06 \times 0.06}{.04 \times 0.023} =$	= 3.91		(1)		[2]
		(iv)	Value of the form	of K _c decrea	uses since the	e equilibrium sh mic	ifts to the le	eft /	[1]
								Total	[20]